Cost-Sensitive Adversarial Robustness at ICLR 2019

Xiao Zhang will present Cost-Sensitive Robustness against Adversarial Examples on May 7 (4:30-6:30pm) at ICLR 2019 in New Orleans.

Paper: [PDF] [[OpenReview]((https://openreview.net/forum?id=BygANhA9tQ&noteId=BJe7cKRWeN)] [ArXiv]

Empirically Measuring Concentration

Xiao Zhang and Saeed Mahloujifar will present our work on Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness at two workshops May 6 at ICLR 2019 in New Orleans: Debugging Machine Learning Models and Safe Machine Learning: Specification, Robustness and Assurance.

Paper: [PDF]

JASON Spring Meeting: Adversarial Machine Learning

I had the privilege of speaking at the JASON Spring Meeting, undoubtably one of the most diverse meetings I’ve been part of with talks on hypersonic signatures (from my DSSG 2008-2009 colleague, Ian Boyd), FBI DNA, nuclear proliferation in Iran, engineering biological materials, and the 2020 census (including a very interesting presentatino from John Abowd on the differential privacy mechanisms they have developed and evaluated). (Unfortunately, my lack of security clearance kept me out of the SCIF used for the talks on quantum computing and more sensitive topics).

Read More…

Congratulations Dr. Xu!

Congratulations to Weilin Xu for successfully defending his PhD Thesis! Weilin’s Committee: Homa Alemzadeh, Yanjun Qi, Patrick McDaniel (on screen), David Evans, Vicente Ordóñez Román Improving Robustness of Machine Learning Models using Domain Knowledge Although machine learning techniques have achieved great success in many areas, such as computer vision, natural language processing, and computer security, recent studies have shown that they are not robust under attack.

Read More…

Deep Fools

New Electronics has an article that includes my Deep Learning and Security Workshop talk: Deep fools, 21 January 2019.

A better version of the image Mainuddin Jonas produced that they use (which they screenshot from the talk video) is below:

ICLR 2019: Cost-Sensitive Robustness against Adversarial Examples

Xiao Zhang and my paper on Cost-Sensitive Robustness against Adversarial Examples has been accepted to ICLR 2019. Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier’s performance for specific tasks.

Read More…

Can Machine Learning Ever Be Trustworthy?

I gave the Booz Allen Hamilton Distinguished Colloquium at the University of Maryland on Can Machine Learning Ever Be Trustworthy?. Video · SpeakerDeck Abstract Machine learning has produced extraordinary results over the past few years, and machine learning systems are rapidly being deployed for critical tasks, even in adversarial environments. This talk will survey some of the reasons building trustworthy machine learning systems is inherently impossible, and dive into some recent research on adversarial examples.

Read More…

Center for Trustworthy Machine Learning

The National Science Foundation announced the Center for Trustworthy Machine Learning today, a new five-year SaTC Frontier Center “to develop a rigorous understanding of the security risks of the use of machine learning and to devise the tools, metrics and methods to manage and mitigate security vulnerabilities.” The Center is lead by Patrick McDaniel at Penn State University, and in addition to our group, includes Dan Boneh and Percy Liang (Stanford University), Kamalika Chaudhuri (University of California San Diego), Somesh Jha (University of Wisconsin) and Dawn Song (University of California Berkeley).

Read More…

Artificial intelligence: the new ghost in the machine

Engineering and Technology Magazine (a publication of the British Institution of Engineering and Technology has an article that highlights adversarial machine learning research: Artificial intelligence: the new ghost in the machine, 10 October 2018, by Chris Edwards. Although researchers such as David Evans of the University of Virginia see a full explanation being a little way off in the future, the massive number of parameters encoded by DNNs and the avoidance of overtraining due to SGD may have an answer to why the networks can hallucinate images and, as a result, see things that are not there and ignore those that are.

Read More…

USENIX Security 2018

Three SRG posters were presented at USENIX Security Symposium 2018 in Baltimore, Maryland: Nathaniel Grevatt (GDPR-Compliant Data Processing: Improving Pseudonymization with Multi-Party Computation) Matthew Wallace and Parvesh Samayamanthula (Deceiving Privacy Policy Classifiers with Adversarial Examples) Guy Verrier (How is GDPR Affecting Privacy Policies?, joint with Haonan Chen and Yuan Tian) There were also a surprising number of appearances by an unidentified unicorn:

Read More…

All Posts by Category or Tags.