JASON Spring Meeting: Adversarial Machine Learning

I had the privilege of speaking at the JASON Spring Meeting, undoubtably one of the most diverse meetings I’ve been part of with talks on hypersonic signatures (from my DSSG 2008-2009 colleague, Ian Boyd), FBI DNA, nuclear proliferation in Iran, engineering biological materials, and the 2020 census (including a very interesting presentatino from John Abowd on the differential privacy mechanisms they have developed and evaluated). (Unfortunately, my lack of security clearance kept me out of the SCIF used for the talks on quantum computing and more sensitive topics).

Read More…

Congratulations Dr. Xu!

Congratulations to Weilin Xu for successfully defending his PhD Thesis! Weilin’s Committee: Homa Alemzadeh, Yanjun Qi, Patrick McDaniel (on screen), David Evans, Vicente Ordóñez Román Improving Robustness of Machine Learning Models using Domain Knowledge Although machine learning techniques have achieved great success in many areas, such as computer vision, natural language processing, and computer security, recent studies have shown that they are not robust under attack.

Read More…

A Plan to Eradicate Stalkerware

Sam Havron (BSCS 2017) is quoted in an article in Wired on eradicating stalkerware: The full extent of that stalkerware crackdown will only prove out with time and testing, says Sam Havron, a Cornell researcher who worked on last year’s spyware study. Much more work remains. He notes that domestic abuse victims can also be tracked with dual-use apps often overlooked by antivirus firms, like antitheft software Cerberus. Even innocent tools like Apple’s Find My Friends and Google Maps’ location-sharing features can be abused if they don’t better communicate to users that they may have been secretly configured to share their location.

Read More…

ISMR 2019: Context-aware Monitoring in Robotic Surgery

Samin Yasar presented our paper on Context-award Monitoring in Robotic Surgery at the 2019 International Symposium on Medical Robotics (ISMR) in Atlanta, Georgia. Robotic-assisted minimally invasive surgery (MIS) has enabled procedures with increased precision and dexterity, but surgical robots are still open loop and require surgeons to work with a tele-operation console providing only limited visual feedback. In this setting, mechanical failures, software faults, or human errors might lead to adverse events resulting in patient complications or fatalities.

Read More…

Deep Fools

New Electronics has an article that includes my Deep Learning and Security Workshop talk: Deep fools, 21 January 2019.

A better version of the image Mainuddin Jonas produced that they use (which they screenshot from the talk video) is below:

Markets, Mechanisms, Machines

My course for Spring 2019 is Markets, Mechanisms, Machines, cross-listed as cs4501/econ4559 and co-taught with Denis Nekipelov. The course will explore interesting connections between economics and computer science. My qualifications for being listed as instructor for a 4000-level Economics course are limited to taking an introductory microeconomics course my first year as an undergraduate. Its good to finally get a chance to redeem myself for giving up on Economics 28 years ago!

Read More…

ICLR 2019: Cost-Sensitive Robustness against Adversarial Examples

Xiao Zhang and my paper on Cost-Sensitive Robustness against Adversarial Examples has been accepted to ICLR 2019. Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier’s performance for specific tasks.

Read More…

A Pragmatic Introduction to Secure Multi-Party Computation

A Pragmatic Introduction to Secure Multi-Party Computation, co-authored with Vladimir Kolesnikov and Mike Rosulek, is now published by Now Publishers in their Foundations and Trends in Privacy and Security series. You can download the book for free (we retain the copyright and are allowed to post an open version) from securecomputation.org, or buy an PDF version from the published for $260 (there is also a printed $99 version). Secure multi-party computation (MPC) has evolved from a theoretical curiosity in the 1980s to a tool for building real systems today.

Read More…

NeurIPS 2018: Distributed Learning without Distress

Bargav Jayaraman presented our work on privacy-preserving machine learning at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018) in Montreal. Distributed learning (sometimes known as federated learning) allows a group of independent data owners to collaboratively learn a model over their data sets without exposing their private data. Our approach combines differential privacy with secure multi-party computation to both protect the data during training and produce a model that provides privacy against inference attacks.

Read More…

Can Machine Learning Ever Be Trustworthy?

I gave the Booz Allen Hamilton Distinguished Colloquium at the University of Maryland on Can Machine Learning Ever Be Trustworthy?. Video · SpeakerDeck Abstract Machine learning has produced extraordinary results over the past few years, and machine learning systems are rapidly being deployed for critical tasks, even in adversarial environments. This talk will survey some of the reasons building trustworthy machine learning systems is inherently impossible, and dive into some recent research on adversarial examples.

Read More…