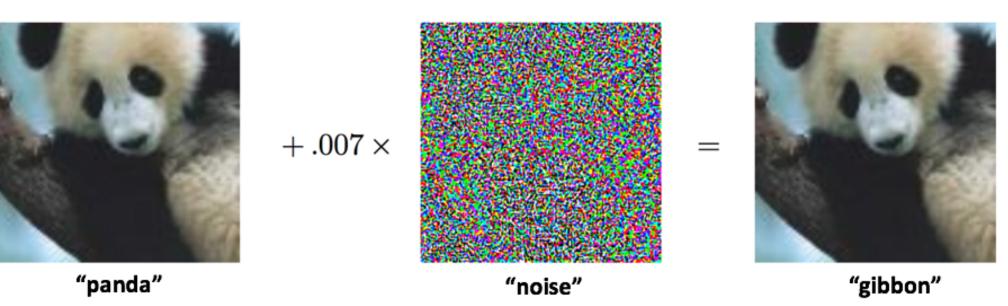
NIVERSITY /IRGINIA

Cost-Sensitive Robustness against Adversarial Examples David Evans Xiao Zhang

Preliminaries

Adversarial examples: an input, generated by some adversary, which is visually indistinguishable from an example from the natural distribution, but is able to mislead the target classifier.



Famous "panda-gibbon" illustration of adversarial examples

More formally, the set of adversarial examples w.r.t. seed example $\{ m{x}_0, y_0 \}$, classifier $f_{ heta}(\cdot)$ and ℓ_{∞} perturbations is defined as

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Defenses with certified robustness (Wong & Zico, 2018)

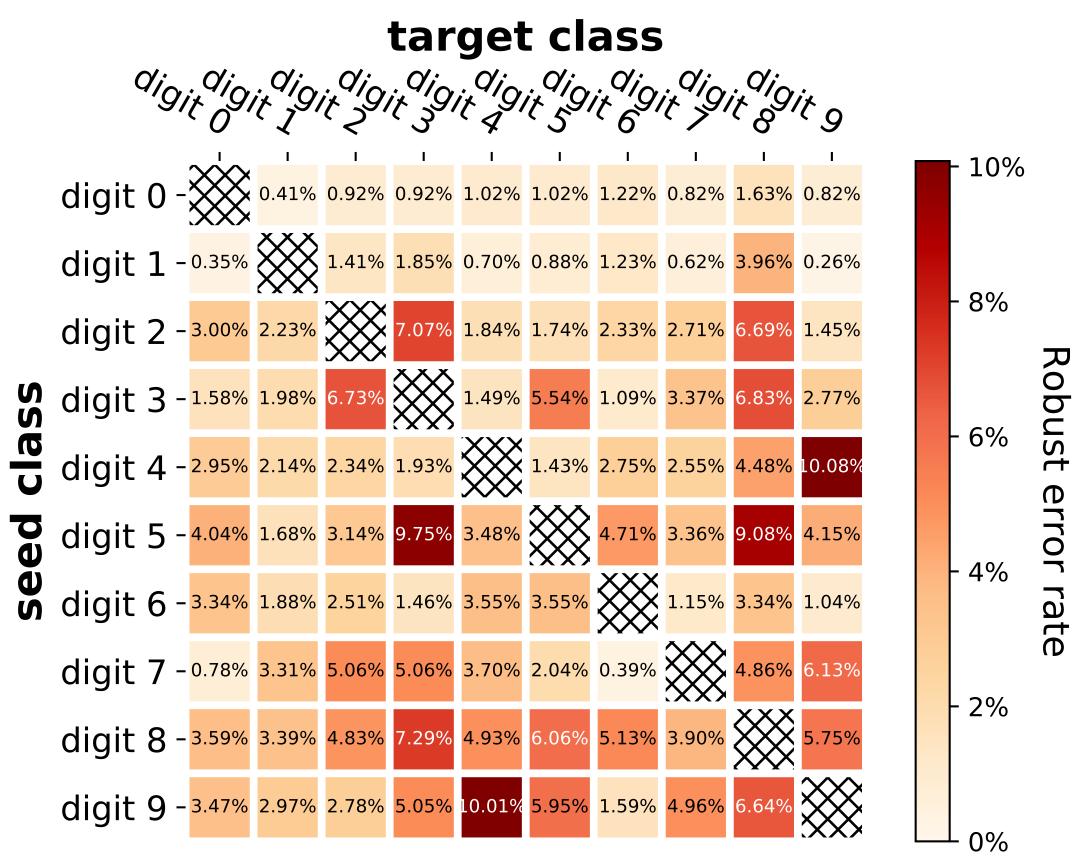
- Construct a convex outer bound on the "adversarial polytope"
- Develop robust certificate for testing given inputs
- Propose training methods to optimize for certifiable robustness

$$\underset{\theta}{\text{minimize}} \quad \frac{1}{N} \sum_{i=1}^{N} \mathcal{L} \Big(-J_{\epsilon} \big(\boldsymbol{x}_{i}, g_{\theta} (\boldsymbol{e}_{y_{i}} \cdot \boldsymbol{1}^{\top} - \boldsymbol{I}) \big), y_{i} \Big),$$

where $-J_{\epsilon}(\boldsymbol{x}_i, g_{\theta}(\boldsymbol{e}_{y_i} \cdot \boldsymbol{1}^\top - \boldsymbol{I}))$ is a guaranteed lower bound.

Pairwise robust heatmap of certified robust classifier

- \blacktriangleright (*i*, *j*)-th entry is a robustness bound of that seed-target pair.
- The vulnerability to transformations differs among class pairs.

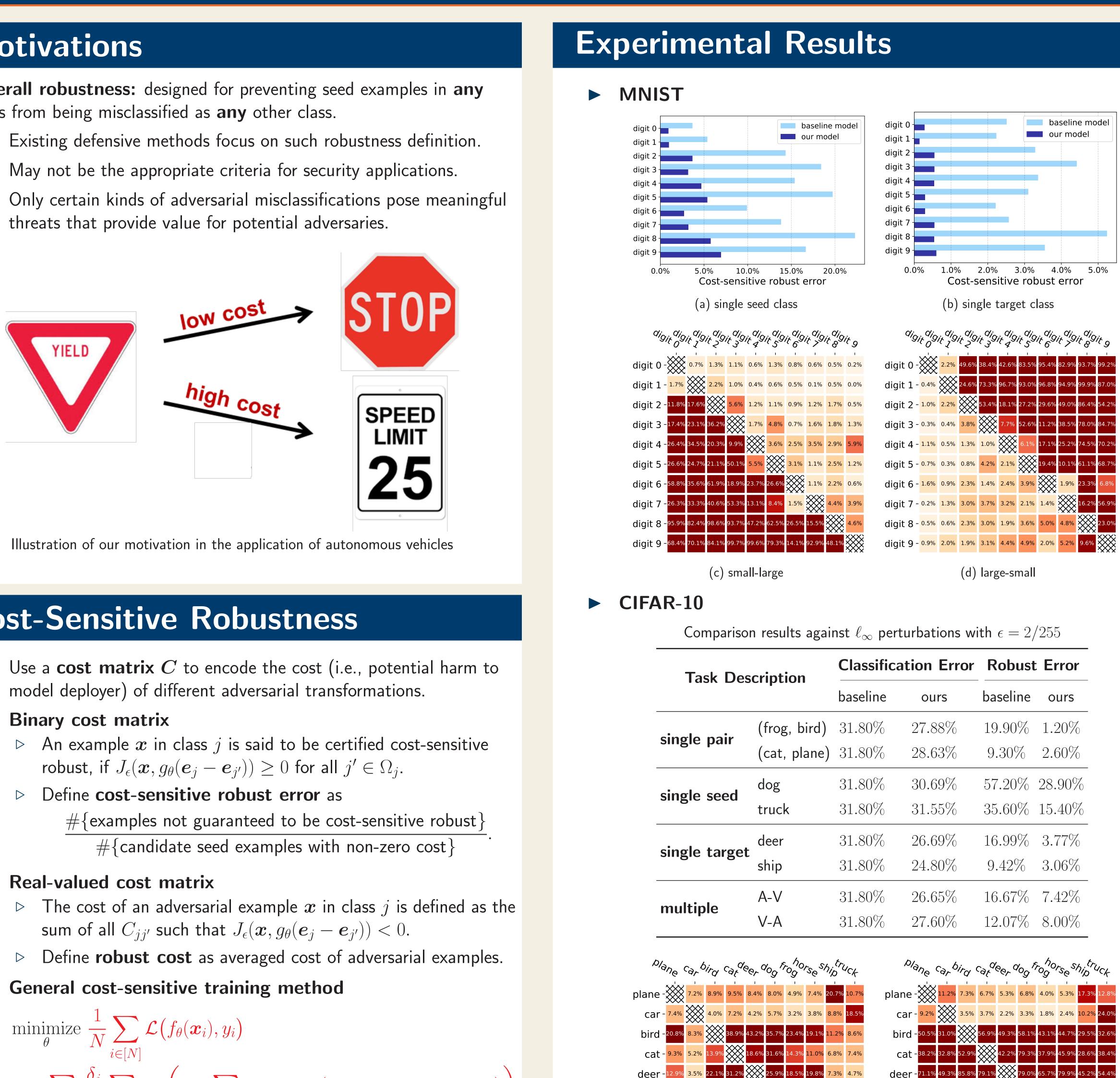


Heatmap of pairwise robust test error

Motivations

Overall robustness: designed for preventing seed examples in **any** class from being misclassified as **any** other class.

- May not be the appropriate criteria for security applications.
- threats that provide value for potential adversaries.



Cost-Sensitive Robustness

$$\begin{array}{l} \text{minimize} \ \frac{1}{N} \sum_{i \in [N]} \mathcal{L} \big(f_{\theta}(\boldsymbol{x}_{i}), y_{i} \big) \\ + \alpha \sum_{j \in [m]} \frac{\delta_{j}}{N_{j}} \sum_{i \mid y_{i} = j} \log \left(1 + \sum_{j' \in \Omega_{j}} C_{jj'} \cdot \exp \left(- J_{\epsilon}(\boldsymbol{x}_{i}, g_{\theta}(\boldsymbol{e}_{j} - \boldsymbol{e}_{j}) \right) \right) \right) \\ \end{array}$$

- Optimize for both standard classification accuracy and certified cost-sensitive robustness, and use α to balance them.
- Can be solved efficiently using gradient-based algorithms.

(e) baseline model

ship - 14.0% 9.3% 5.3% 6.5% 4.6% 5.6% 3.1% 3.7% 3.7% 9.8%

truck - 12.7% 20.9% 7.2% 10.4% 7.6% 8.4% 5.2% 9.2% 13.0%

froa -

horse - 8.2%

% 🔆 11.!

2.7% 6.5% 5.6%

% 💥 5.7% 7.8%

24.0% **XXX 10.9%** 4.8% 5.9%

5.0% 4.7% 3.9% 4.6%

(f) our model

truck -^{15.5%} 25.7% 4.4% 5.4% 3.7% 5.6%

Error				
ours				
1.20%				
2.60%				
28.90%				
15.40%				
3.77%				
3.06%				
7.42%				
8.00%				

h_{0}	rse ^s	hip ^{tro}	ick
4.0%	5.3%	17.3%	12.8%
1.8%	2.4%	10.2%	24.0%
43.1%	44.7%	29.5%	32.6%
37.9%	45.9%	28.6%	38.4%
65.7%	79.9%	45.2%	54.4%
30.6%	41.6%	21.9%	27.6%
\bigotimes	53.7%	32.6%	50.2%
21.7%	\bigotimes	22.2%	35.0%
2.7%	3.4%		11.1%
3.6%	5.6%	13.7%	\bigotimes

{xiao, evans}@virginia.edu